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Wave Function theory 
(aka. Electronic structure theory)

Electron density                Electronic energy 

dipole moment, Born-Oppenheimer 
charge distribution,… approximation 1927

Potential energy surface (PES)

Molecular geometry
 Bond energies
 Barrier heights 
 Spectra
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Schrödinger wavefunction 
• Wave Function Theory (WFT) define by Erwin Schrödinger (1925)
• Awarded the Nobel Prize in Physics (1933) for his work on WFT

• Electron cannot be describes by classical mechanics
• Described in term of wavefunction Ψ (all the information is contained in the wavefunction)
• Time independent Schrödinger equation describes the particle wave duality 

• For a general N particle system the Hamiltonian operator contains both Kinetic ( �𝑇𝑇) and Potential
( �𝑉𝑉) energy terms for all particles

�𝑯𝑯Ψ = �𝑬𝑬Ψ
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Hamiltonian 
The Hamiltonian is define as:

Schrödinger equation can be separated into two parts based on the Born-Oppenheimer approximation.

The Born-Oppenheimer approximation states:
Nuclei are much heavier and much much slower than electrons. So for practical purposes it is convenient to decouple the 
nuclear and electronic motion to compute electronic energies for “fixed” nuclear positions. 

Nuclear Equation Electronic Equation

�𝐻𝐻 = �𝑇𝑇𝑁𝑁 + �𝑇𝑇𝑒𝑒 + �𝑉𝑉𝑁𝑁𝑒𝑒 + �𝑉𝑉𝑒𝑒𝑒𝑒 + �𝑉𝑉𝑁𝑁𝑁𝑁

�𝑇𝑇𝑁𝑁 = −�
𝑖𝑖

−ℏ2

2𝑀𝑀𝑖𝑖
𝛻𝛻𝑅𝑅𝑖𝑖
2 �𝑇𝑇𝑒𝑒 = −�

𝑖𝑖

−ℏ2

2𝑚𝑚𝑒𝑒
𝛻𝛻𝑟𝑟𝑖𝑖
2 �𝑉𝑉𝑁𝑁𝑁𝑁 = −�

𝑖𝑖

�
𝑗𝑗

𝑍𝑍𝑖𝑖𝑒𝑒2

4𝜋𝜋𝜀𝜀0 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗

�𝑉𝑉𝑒𝑒𝑒𝑒 = �
𝑖𝑖

�
𝑗𝑗>𝑖𝑖

𝑒𝑒2

4𝜋𝜋𝜀𝜀0 𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗

�𝑉𝑉𝑁𝑁𝑁𝑁 = �
𝑖𝑖

�
𝑗𝑗>𝑖𝑖

𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗𝑒𝑒2

4𝜋𝜋𝜀𝜀0 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑗𝑗

𝛻𝛻𝑟𝑟𝑖𝑖
2 =

𝛿𝛿2

𝛿𝛿𝑥𝑥𝑖𝑖2
+

𝛿𝛿2

𝛿𝛿𝑦𝑦𝑖𝑖2
+
𝛿𝛿2

𝛿𝛿𝑧𝑧𝑖𝑖2
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The Born-Oppenheimer approximation sets TN = 0.

�𝐻𝐻 = �𝑇𝑇𝑁𝑁 + �𝑉𝑉𝑁𝑁𝑁𝑁 �𝐻𝐻 = �𝑇𝑇𝑒𝑒 + �𝑉𝑉𝑁𝑁𝑒𝑒 + �𝑉𝑉𝑒𝑒𝑒𝑒



The Electronic Hamiltonian

• Considering a single nuclei system where �𝑉𝑉𝑁𝑁𝑁𝑁 can be ignored 
• Which can be generalized as 

�𝐻𝐻 = −
1
2𝛻𝛻1

2 −
1
2𝛻𝛻2

2 −
𝑍𝑍
𝑟𝑟1
−
𝑍𝑍
𝑟𝑟2

+
1
𝑟𝑟12

Electronic Equation for 2 electron system in atomic units

�𝑇𝑇𝑒𝑒 �𝑉𝑉𝑁𝑁𝑒𝑒 �𝑉𝑉𝑒𝑒𝑒𝑒

�𝐻𝐻Ψ = �𝐸𝐸Ψ = �
𝑖𝑖=1

𝑁𝑁
−ℏ2

2𝑀𝑀 𝛻𝛻𝑖𝑖2Ψ − 𝑍𝑍𝑒𝑒2�
𝑅𝑅

1
𝑟𝑟𝑖𝑖 − 𝑅𝑅 Ψ +

1
2�
𝑖𝑖≠𝑗𝑗

𝑒𝑒2

𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗
Ψ

Electronic Equation for N electron system in SI units

�𝐻𝐻 =
−ℏ2

2𝑀𝑀 𝛻𝛻12 −
−ℏ2

2𝑀𝑀 𝛻𝛻22 −
𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟1
−

𝑍𝑍𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟2
+

𝑒𝑒2

4𝜋𝜋𝜀𝜀0 𝑟𝑟1 − 𝑟𝑟2

Electronic Equation for 2 electron system in SI units

�𝑉𝑉𝑁𝑁𝑒𝑒 �𝑉𝑉𝑒𝑒𝑒𝑒�𝑇𝑇𝑒𝑒
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�𝐻𝐻 = �𝑇𝑇𝑒𝑒 + �𝑉𝑉𝑁𝑁𝑒𝑒 + �𝑉𝑉𝑒𝑒𝑒𝑒



One-dimensional PES

• Diatomic bond stretching has only one degree 
of freedom

• Each structure is associated with a unique 
energy

• A PES displays the energy of a molecule as a 
function of its geometry

• PES depends on the relative location of the 
atoms not the absolute 
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Standard Diatomic Bond Stretch
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Two-dimensional PES
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Two-dimensional PES Cont.

• Based upon 3N-6 (non-linear) degrees of 
freedom

• 6 correlates to the translation and rotational 
movement

• More that 2-dimensions don’t graph well. 
Generally a PES is displayed as a 2D slice of the 
entire energy surface

• In this example the bond angle between ABC is 
being held constant, while the bond length are 
varied

8

A
B

C

Image Credit: Essentials of Computational Chemistry: Theories and Models, 2nd Ed. by Prof. C. J. Cramer
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• The PES can be used to obtain useful chemical 
information 

• Using two minimums on the surface, the 
equilibrium constant between the points can 
be calculated

• The an approximate rate constant for a 
minimum traveling through a transition state 
can be calculated

𝐾𝐾 = 𝑒𝑒−∆𝐺𝐺/𝑅𝑅𝑅𝑅

k= 𝑘𝑘𝐵𝐵𝑇𝑇
ℎ
𝑒𝑒−∆𝐺𝐺‡/𝑅𝑅𝑅𝑅

Two-dimensional PES Cont.

Image Credit: Prof. C. J. Cramer, University of Minnesota 



The Variational principle for ground state
• In quantum mechanics, one often encounters systems for which the Schrödinger equation cannot 

be solved exactly
• There are two methods to approximately solve the Schrödinger equation:

• Perturbation Theory
• Variational Theorem

𝐸𝐸 = 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
Ψ 𝐻𝐻 Ψ
Ψ Ψ =

∫Ψ∗𝐻𝐻Ψ𝑑𝑑𝑑𝑑
∫Ψ∗Ψ𝑑𝑑𝑑𝑑

≥ 𝐸𝐸0

10Diagram Credit: Prof. C. J. Cramer, University of Minnesota 



Hartree-Fock (HF)
Wave function for ground-state Helium (1s2)

or

Wave function for ground-state Helium (1s2) can be written as 2x2 determinant called as slater determinant 

Different spin orbitals (combo of spatial and spin part of an orbital taken together) are put in different 
columns different electrons are put in different rows 
A Slater determinant is automatically antisymmetric wrt the exchange of two electrons

Ψ 1,2 = −Ψ 2,1
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Hartree-Fock (HF)

• Hartree’s original method neglected to consider that the wave function in a multi-electron atom 
(or molecule) must be antisymmetric with respect to electron exchange.

• The Hartree-Fock is an extension, using antisymmetrized wave functions.

• Resulting in additional “Exchange” terms in the Effective Hamiltonians and “Exchange Integrals” in 
the expression for the energy.
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𝐸𝐸𝐻𝐻𝐻𝐻 = �
𝑖𝑖=1

𝑁𝑁

𝜀𝜀𝑖𝑖 −�
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𝑁𝑁

�
𝑗𝑗>1

2𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑖𝑖𝑖𝑖

𝐸𝐸𝐻𝐻 = �
𝑖𝑖=1

𝑁𝑁

𝜀𝜀𝑖𝑖 −�
𝑖𝑖=1

𝑁𝑁

�
𝑗𝑗>1

𝐽𝐽𝑖𝑖𝑖𝑖

𝜀𝜀𝑖𝑖 = Energy of an electron

𝜀𝜀𝑖𝑖 ≡ �𝜑𝜑𝑖𝑖 𝜏𝜏 −
1
2
𝛻𝛻2 − 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 𝜏𝜏 𝜑𝜑𝑖𝑖 𝜏𝜏 𝛿𝛿𝛿𝛿



Continue with wavefunction theory 

• Ψ is complicated 
• Difficult to interpret
• Has a strange unit (prob. density)1/2

• Can we use a physical observable?
• Which particular physical observable is useful?
• Physical observable that allows us to construct the Hamiltonian
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Thomas-Fermi-Dirac Model (TFD) 
• Conventional approach of using Ψ cannot be probed experimentally and it depends on 4N (x, y, z 

and spin) variable where N being number of electron.

• Thomas-Fermi were the first to use electron density (ρ) as a physical observable to calculate the 
Hamiltonian (with no reference to Ψ)

• ρ is define as a function of three spatial coordinates:

• TF theory defines the kinetic and potential energy terms as functionals of ρ

• To determine the correct density, Thomas-Fermi employed a variational principle – Assuming the 
ground state of the system is connected to ρ for which the energy is minimized under the 
constraint of

𝜌𝜌 ≡ 𝜌𝜌 𝜏𝜏 = 𝜌𝜌 𝑥𝑥, 𝑦𝑦, 𝑧𝑧

𝑁𝑁 = �𝜌𝜌 𝛿𝛿𝛿𝛿
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�𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌 = �𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌 + �𝐸𝐸𝑁𝑁𝑁𝑁 𝜌𝜌 + 𝐽𝐽 𝜌𝜌



Thomas-Fermi-Dirac Model (TFD) 

• Based on the uniform electron gas (ueg) they propose the following functional for 
KE (TTF)

• The energy of an atom is finally obtained using the classical expression for the 
nuclear-electron potential (ENe) and electron-electron potential (J).

• TF equation together with an assumed variational principle represents the first 
density functional theory (1927)

• Dirac introduced the exchange term Ex[ρ] or KD[ρ] in (1930) �𝐾𝐾𝐷𝐷 𝜌𝜌 = −𝐶𝐶𝑥𝑥 �𝜌𝜌 ⁄4 3𝛿𝛿𝛿𝛿

𝐶𝐶𝑥𝑥 =
3
4

3
𝜋𝜋

⁄1 3
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�𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌 = 𝐶𝐶𝑓𝑓 �𝜌𝜌 ⁄5 3𝛿𝛿𝛿𝛿 𝐶𝐶𝑓𝑓 =
3

10
3𝜋𝜋2 ⁄2 3

�𝐸𝐸𝑁𝑁𝑁𝑁 𝜌𝜌 = �
𝐴𝐴

𝑍𝑍𝐴𝐴�
𝜌𝜌
𝑟𝑟𝑎𝑎
𝛿𝛿𝛿𝛿 𝐽𝐽 𝜌𝜌 = �

𝜌𝜌 1 𝜌𝜌 2
𝑟𝑟12

𝛿𝛿𝜏𝜏1𝛿𝛿𝜏𝜏2

�𝐸𝐸𝑇𝑇𝑇𝑇 𝜌𝜌 = �𝑇𝑇𝑇𝑇𝑇𝑇 𝜌𝜌 + �𝐸𝐸𝑁𝑁𝑁𝑁 𝜌𝜌 + 𝐽𝐽 𝜌𝜌 + �𝐾𝐾𝐷𝐷 𝜌𝜌



Thomas-Fermi-Dirac Model (TFD) 
• A further correction that was applied to the model by introducing 

Hole Function (h)
• The Hole function corrects the energetics error in the       functional 

introduced by assuming a classical behavior

• Slater in 1951 attempted to improve the electron exchange term 
defined by Dirac in 1930.

• By using α=1, while Dirac used α=2/3 for the same expression

𝐶𝐶𝑥𝑥 =
9𝛼𝛼
8

3
𝜋𝜋

⁄1 3
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�𝐸𝐸𝑋𝑋 𝜌𝜌 = −𝐶𝐶𝑥𝑥 �𝜌𝜌 ⁄4 3𝛿𝛿𝛿𝛿

𝐽𝐽 𝜌𝜌



Xa (Hartree-Fock-Slater (HFS Model))

• Help improve computational costs for HF calculations

• Hartree-Fock calculations employing Slater’s exchange equation

• α has been used as an empirical value, and through empirical analysis 
in a variety of systems suggests that α=3/4 produces more accurate 
results than both α=1 and α=2/3

𝐶𝐶𝑥𝑥 =
9𝛼𝛼
8

3
𝜋𝜋

⁄1 3
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Hohenberg-Kohn

• In 1964 Hohenberg and Kohn proved two theorems which established DFT 
as a rigorous quantum chemical methodology

The first theorem demonstrates that ρ uniquely determines the Hamiltonian and thus 
all the properties of the system.

• Electrons interact with one another and with an external potential
External potential is the attraction to the nuclei

• Hohenberg and Kohn demonstrated that: 
• The ground electronic energy is determined completely by ρ
• The ρ determines the external potential (v)
• The Hamiltonian is determined by v
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Hohenberg-Kohn Theorem I
Assume: Two different external 
potentials can be consistent with 
the same non-degenerate ground-
state density (ρ0). 
External potentials:

va and vb

Potentials determine Hamiltonians: 
Ha and Hb

Associate a ground-state wave 
function (Ψ0) and eigenvalue (E0)

𝐸𝐸0,𝑎𝑎 < Ψ0,𝑏𝑏 𝐻𝐻𝑎𝑎 Ψ0,𝑏𝑏

𝐸𝐸0,𝑎𝑎 < Ψ0,𝑏𝑏 𝐻𝐻𝑎𝑎 − 𝐻𝐻𝑏𝑏 + 𝐻𝐻𝑏𝑏 Ψ0,𝑏𝑏

𝐸𝐸0,𝑎𝑎 < Ψ0,𝑏𝑏 𝐻𝐻𝑎𝑎 − 𝐻𝐻𝑏𝑏 Ψ0,𝑏𝑏 + Ψ0,𝑏𝑏 𝐻𝐻𝑏𝑏 Ψ0,𝑏𝑏

𝐸𝐸0,𝑎𝑎 < Ψ0,𝑏𝑏 𝐻𝐻𝑎𝑎 − 𝐻𝐻𝑏𝑏 Ψ0,𝑏𝑏 + 𝐸𝐸0,𝑏𝑏

𝐸𝐸0,𝑎𝑎 < � 𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏 𝜌𝜌0𝛿𝛿𝛿𝛿 + 𝐸𝐸0,𝑏𝑏
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Hohenberg-Kohn Theorem I

By assuming ρ0 associated with Ψa and Ψb are the same permits us to 
eliminate the integrals as must sum to zero

The initial assumption is incorrect

𝐸𝐸0,𝑏𝑏 < � 𝑣𝑣𝑏𝑏 − 𝑣𝑣𝑎𝑎 𝜌𝜌0𝛿𝛿𝛿𝛿 + 𝐸𝐸0,𝑎𝑎

𝐸𝐸0,𝑎𝑎 + 𝐸𝐸0,𝑏𝑏 < � 𝑣𝑣𝑏𝑏 − 𝑣𝑣𝑎𝑎 𝜌𝜌0𝛿𝛿𝛿𝛿 + � 𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏 𝜌𝜌0𝛿𝛿𝛿𝛿 + 𝐸𝐸0,𝑏𝑏 + 𝐸𝐸0,𝑎𝑎 < 𝐸𝐸0,𝑏𝑏 + 𝐸𝐸0,𝑎𝑎

𝐸𝐸0,𝑎𝑎 + 𝐸𝐸0,𝑏𝑏 < 𝐸𝐸0,𝑏𝑏 + 𝐸𝐸0,𝑎𝑎
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Hohenberg-Kohn Theorem II
• While Theorem I proves the relationship between ρ & Ψ

• How do you get the density of a system?

• The density can be obtained through the variational principle

• Theorem II states that ρ obeys the variational principle 

• From theorem I was used to get the density that determines a 
candidate wave function

• The candidate wave function can be used to obtain the energy 
expectation value

GS 
Density?

External 
Potential

Hamiltonian

Wave 
Function

𝐸𝐸0 ≤ 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = Ψ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Ψ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
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Thank you!
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