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Schrodinger wavefunction

Wave Function Theory (WFT) define by Erwin Schrodinger (1925)
Awarded the Nobel Prize in Physics (1933) for his work on WFT
Electron cannot be describes by classical mechanics
Described in term of wavefunction W (all the information is contained in the wavefunction)
Time independent Schrodinger equation describes the particle wave duality
HY = EY
For a general N particle system the Hamiltonian operator contains both Kinetic (T) and Potential
(V) energy terms for all particles
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The Hamiltonian is define as:

H=Ty+T,+Vye+ Vo + Vyn
Schrodinger equation can be separated into two parts based on the Born—Oppenhelmer apprOX|mat|on.
The Born-Oppenheimer approximation states:

Nuclei are much heavier and much much slower than electrons. So for practical purposes it is convenient to decouple the
nuclear and electronic motion to compute electronic energies for “fixed” nuclear positions.
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The Electronic Hamiltonian

e Considering a single nuclei system where Vyy can be ignored

e Which can be generalizedas H=T, + Vy, + I,

Electronic Equation for 2 electron system in atomic units Electronic Equation for 2 electron system in Sl units
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Energy

One-dimensional PES

rAB
Standard Diatomic Bond Stretch

Diatomic bond stretching has only one degree
of freedom

Each structure is associated with a unique
energy

A PES displays the energy of a molecule as a
function of its geometry

PES depends on the relative location of the
atoms not the absolute



Two-dimensional PES
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Two-dimensional PES Cont.

B
A/ \C

e Based upon 3N-6 (non-linear) degrees of
freedom

* 6 correlates to the translation and rotational

movement
150

 More that 2-dimensions don’t graph well.

Generally a PES is displayed as a 2D slice of the
entire energy surface

1004

Energy, kcal/mol
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* In this example the bond angle between ABC is

being held constant, while the bond length are
varied

Image Credit: Essentials of Computational Chemistry: Theories and Models, 2"¢ Ed. by Prof. C. J. Cramer



Two-dimensional PES Cont.

e The PES can be used to obtain useful chemical
information

e Using two minimums on the surface, the
equilibrium constant between the points can
be calculated

K = o—AG/RT

* The an approximate rate constant for a
minimum traveling through a transition state
can be calculated

kgT _pct
kzieAG/RT

Image Credit: Prof. C. J. Cramer, University of Minnesota



The Variational principle for ground state

* |In guantum mechanics, one often encounters systems for which the Schrodinger equation cannot
be solved exactly
* There are two methods to approximately solve the Schrédinger equation:
e Perturbation Theory
e Variational Theorem
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Variational Process electronic road map: systematically
improvable by going to higher resolution

HY =EWY

l o Energy (cannot go
lower than "true" energy)
Hamiltonian operator
(systematically improvable)
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Diagram Credit: Prof. C. J. Cramer, University of Minnesota



Hartree-Fock (HF)

Wave function for ground-state Helium (1s?)
R ~ = B ~ = 1
W = E[ﬁls(n)ﬂ’l%(f: B, — 0. ()P, (Fa,] O - ﬁ[15(1){:(1 15(2)3, - 1s(1) B 1s(2), ]

V1(Z1)  Ya(Z1) ... Yn(E1)
1 Tf)l(.fz) iﬁ?z(.f:z) ww(.fz)

WD Pt wHF = — : : :
P1(Zy) vo(Zy) ... Yn(ZN)
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Wave function for ground-state Helium (1s?) can be written as 2x2 determinant called as slater determinant

sV, LsMA| 1
1sQQa, 1sQ)B| 2

w(l,2) = LN

V2

[Is(De,15(2) B, —1s(D) B 1s(2)ax, | W(1,2) = -w(2,1)

Different spin orbitals (combo of spatial and spin part of an orbital taken together) are put in different
columns different electrons are put in different rows

A Slater determinant is automatically antisymmetric wrt the exchange of two electrons
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Hartree-Fock (HF)

e Hartree’s original method neglected to consider that the wave function in a multi-electron atom
(or molecule) must be antisymmetric with respect to electron exchange.
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 The Hartree-Fock is an extension, using antisymmetrized wave functions.

e Resulting in additional “Exchange” terms in the Effective Hamiltonians and “Exchange Integrals” in

the expression for the energy. 1 o, (e, (7)) || 0.(F)e (7)) Coulomb
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Continue with wavefunction theory

e W is complicated

e Difficult to interpret

 Has a strange unit (prob. density)/2

* Can we use a physical observable?

 Which particular physical observable is useful?

* Physical observable that allows us to construct the Hamiltonian



Thomas-Fermi-Dirac Model (TFD)

Conventional approach of using W cannot be probed experimentally and it depends on 4N (x, vy, z
and spin) variable where N being number of electron.

Thomas-Fermi were the first to use electron density (p) as a physical observable to calculate the
Hamiltonian (with no reference to W)

p is define as a function of three spatial coordinates:
p=p()=pky2)
TF theory defines the kinetic and potential energy terms as functionals of p

Erelpl = Trelpl + Enelp] + J1p]

To determine the correct density, Thomas-Fermi employed a variational principle — Assuming the
ground state of the system is connected to p for which the energy is minimized under the
constraint of

N=fp6r



Thomas-Fermi-Dirac Model (TFD)

* Based on the uniform electron gas (ueg) they propose the following functional for
KE (T+,) A 3
Trelpl = ijps/SST Cr = E(37T2)2/3

 The energy of an atom is finally obtained using the classical expression for the
nuclear-electron potential (EN:{ and electron-electron potential (J).

p(1)p(2)
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 TF equation together with an assumed variational principle represents the first
density functional theory (1927)

e Diracintroduced the exchange term E, [p] or K;[p] in (1930) Kplp]l = —ijp4/35r
Erplp] = Trrlpl + Enelpl +J[p] + Kplp] 3 /3\1/3
10
4\



Thomas-Fermi-Dirac Model (TFD)

e A further correction that was applied to the model by introducing
Hole Function (h)

* The Hole function corrects the energetics error in the Jlrl functional
introduced by assuming a classical behavior

(S L)L e

 Slater in 1951 attempted to improve the electron exchange term
defined by Dirac in 1930.
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Xa (Hartree-Fock-Slater (HFS Model))

* Help improve computational costs for HF calculations
* Hartree-Fock calculations employing Slater’s exchange equation

* o has been used as an empirical value, and through empirical analysis
in a variety of systems suggests that a=3/4 produces more accurate
results than both a=1 and a=2/3

1/3
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Hohenberg-Kohn

* In 1964 Hohenberg and Kohn proved two theorems which established DFT
as a rigorous quantum chemical methodology

The first theorem demonstrates that p uniquely determines the Hamiltonian and thus
all the properties of the system.

e Electrons interact with one another and with an external potential
External potential is the attraction to the nuclei

e Hohenberg and Kohn demonstrated that:
 The ground electronic energy is determined completely by p
 The p determines the external potential (v)
e The Hamiltonian is determined by v



Hohenberg-Kohn Theorem |

Assume: Two different external
Ey, < (¥, H,|VP ) : :
oa < {o|Ha|¥op) potentials can be consistent with
Eoq < (Wop|He — Hp + Hp|Wo 1) the same non-degenerate ground-

Eoq < (Wo|Ha — Hp|Wo) + (Po|Hp|Pop) ;tatte deln5|tty (;::9),I
Xternad otentiails.
Eoe < (Wo|Ha — Ho|Pon) + Eo s P

v, and v,
Eoa < | [va —vplpodT + Egp Potentials determine Hamiltonians:
H,and H,

Associate a ground-state wave
function (W,) and eigenvalue (E,)



Hohenberg-Kohn Theorem |

Eop < f[vb — Valpo6T + Eg o

Eoog+ Eogp < j[vb — UalpodT + f[va — Vplpo0T + Egp + Egq < Eop + Egg
Eoa+ Eop <Epp +Epgq

By assuming p,associated with W_and W, are the same permits us to
eliminate the integrals as must sum to zero

The initial assumption is incorrect



Hohenberg-Kohn Theorem |

While Theorem | proves the relationship between p & W

How do you get the density of a system?

Wave
Function
Hamiltonian

The density can be obtained through the variational principle

External
Potential

Theorem Il states that p obeys the variational principle

GS
Density?

From theorem | was used to get the density that determines a
candidate wave function

The candidate wave function can be used to obtain the energy
expectation value Ey < Ecana = (YeanalHeanalYeana)
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